Master Biologie – UFR Chimie et Biologie

Internship project Master 2 Recherche
Year 2016/2017

Laboratory: Institut de Biologie Structurale
Team: Biomolecular NMR Spectroscopy
Director: Winfried Weissenhorn
Head of team: Jérôme Boisbouvier

Name and status of scientist in charge of the project: Paul Schanda / Beate Bersch
Address: 71 Avenue des Martyrs, 38044 Grenoble Cedex 9
Phone: 04 57 42 86 59 / 85 12
e-mail: paul.schanda@ibs.fr / beate.bersch@ibs.fr

Specialty MASTER:
- [] Neurosciences and Neurobiology
- [] Immunology, Microbiology, Infectious Diseases
- [x] Integrative Structural Biology
- [] Physiology Epigenetics Development Differentiation

Title of project: Addressing biological function and specificity of two different mitochondrial chaperone assemblies by NMR spectroscopy

Objectives (3 lines max):
The project aims at the characterization of the Tim8/13 chaperone complex from the mitochondrial intermembrane space. Solution NMR will be used to address chaperone substrate interaction: binding site location, changes in dynamics and/or protein conformation as seen from the chaperone or protein substrate.

Abstract (10 lines max):
Mitochondria perform a wide range of key cellular functions, many of which require the import and export of metabolites through the mitochondrial membranes. This transport is performed by membrane proteins in the inner and outer mitochondrial membrane. The most mitochondrial proteins are produced in the cytosol and need to be imported. A sophisticated transport machinery leads the protein precursors from the cytosol, through the mitochondrial outer membrane to the intermembrane space for eventual insertion into the membrane. Two homologous heterooligomeric chaperone assemblies are known to protect membrane protein precursors from the aqueous environment in the intermembrane space: TIM9/10 and TIM8/13. The mechanism by which these chaperones transport their substrate proteins is currently poorly understood. We characterized binding of unfolded carrier proteins to TIM9/10 and want to study the homologous TIM8/13 assembly in order to obtain insight on a molecular level on substrate specificity and possible interactions between the two assemblies that are simultaneously present in the intermembrane space.

Methods (3 lines max):
Protein expression and refolding, isotopic labeling, protein purification, chromatography, solution NMR, processing and interpretation of NMR data

Relevant publications of the team (3 max):

Requested domains of expertise (few keywords):
interest in structural biology and NMR, protein purification