IrisFP photobleaching mechanism (2013)

Comment meurent les protéines fluorescentes ?

Fluorescent proteins are widespread markers in cellular imaging, providing a highly flexible toolbox to investigate live cells. Unfortunately, contrary to organic dyes, fluorescent proteins are particularly sensitive to the photobleaching phenomenon, the definitive loss of fluorescence following photo-induced destruction of the chromophore. Photobleaching is particularly problematic in super-resolution microscopy techniques, which are being rapidly developed today, limiting the resolution that can be achieved. By combining kinetic crystallography, optical and Raman spectroscopy, molecular dynamics simulations, mass spectrometry, and super resolution microscopy, we have investigated the photophysical mechanisms leading to photobleaching of the fluorescent protein IrisFP. We have shown that depending on the illumination intensity used for the imaging experiment, two completely different photobleaching mechanisms show up. At low laser intensity, typical of a standard widefield microscopy experiment, an oxygen-dependent mechanism predominates. On the contrary, at high laser intensity, typical of super-resolution microscopy experiments, a redox-dependent mechanism prevails. The first mechanism, which generates reactive oxygen species (ROS) in the cell is thus expected to be more cytotoxic than the second mechanism, which does not generate such species. Thus, this work suggests in a counterintuitive manner that by increasing laser intensity at constant those, less cellular damages would be created. This hypothesis now needs to be experimentally verified.

Chenxi Duan, Virgile Adam, Martin Byrdin, Jacqueline Ridard, Sylvie Kieffer-Jacquinot, Cécile Morlot, Delphine Arcizet, Isabelle Demachy & Dominique Bourgeois Structural Evidence for a Two-Regime Photobleaching Mechanism in a Reversibly Switchable Fluorescent Protein J. Am. Chem. Soc. (2013), 135 : 15841−15850 • DOI : 10.1021/ja406860e

back to pixel home